
Famo.us/Angular

Famo.us/Angular

What is it?

It’s an MVC framework for creating Famo.us apps.

It’s powered by AngularJS and it integrates seamlessly
with both Famo.us and Angular apps.

It’s not a replacement for Famo.us, and it’s not a replacement for AngularJS:
It’s a way to bring MVC structure to Famo.us apps.

Famo.us/Angular

Famo.us
Scene Graph

In short, it’s a tree.

It’s the data structure that Famo.us uses to
manage nested UI components. It’s often
used in 3D graphics and game development.

It’s an elegant way to manage hierarchical
transformations: child nodes can
be transformed independently, but
transformations on parent nodes affect all
descendants.

What is a scene graph?

Person

Head Torso

Arm

Hand

Arm... ...

...

Legs

(rotate the whole body and everything else moves with it.
rotate a finger and it moves on its own.)

desktoppub.about.com

Famo.us/Angular

Famo.us
Scene Graph

You create components, then you add children
to parents.

The most primitive element of the
Famo.us scene graph is the RenderNode.
Most core components subclass or use
RenderNodes internally.

When you add a Surface to a View, you’re
adding one RenderNode to another, and you’re
creating a tree.

This is an imperative style of authoring a UI.

How do you create a scene graph in Famo.us?

(you are commanding the program to put pieces together.)

Assembling a tree by adding children to parents

famo.us/university

Famo.us/Angular

DOM

In short, it’s a tree.

It’s the data structure that browsers natively
use to manage nested UI components.

It’s not as elegant at positioning and styling
things (CSS...)

But it’s an elegant way to manage
hierarchical content.

HTML (the language of the DOM) is a
declarative style of authoring a UI.

http://lwp.interglacial.com/ch09_01.htm

What is the DOM?

(you are describing the content of the UI.)

Famo.us/Angular

DOM

No.

Famo.us doesn’t yet have its own
way of separating content from how
it’s presented.

In larger scale apps (high complexity
or large teams,) this architectural
separation of concerns is a must.

Wouldn’t it be great if there were
a way to use the DOM to declare
content, while letting Famo.us
maintain full control of rendering?

But with Famo.us, isn’t the DOM obsolete?

(drum roll...)

ufunk.net

(and this is a pretty example)

Not okay.

Famo.us/Angular

AngularJS

AngularJS is a full-powered MVC,
letting you build apps with structure,
modularity, and handy features like
two-way data-binding.

It allows you to attach arbitrary
compilation behavior to standard
DOM nodes.

This compilation behavior (as well as
the intrinsic hierarchy in the DOM)
is what Famo.us/Angular uses to
compile the DOM into a
Famo.us scene graph.

Enter: AngularJS

(wut?)

Famo.us/Angular

Famo.us/
Angular

Famo.us/Angular lets you use the
DOM to describe the content of your
app.

It crawls through that DOM and
passes along the tree that it finds
to Famo.us, to render as its scene
graph. Then the original Angular
DOM gets display: none’d
(hidden from screen)

Angular’s two-way data-binding and
custom directives (or any normal
HTML) remain intact.

Performance is pure Famo.us.

The Famo.us/Angular Jump: Compiling the DOM

Famo.us/Angular

Vanilla Famo.us

Famo.us/Angular

Famo.us/
Angular

Famo.us/Angular lets you use
the Angular style of declaring a
UI, binding values to controller
variables, and then changing those
values from the controller.

This keeps declarative and
imperative concerns cleanly
separated.

For example: declare a fa-
modifier. Bind its opacity value to
a variable on your controller. Now,
imperatively update the variable
in your controller. The UI updates
accordingly.

Declare, data-bind, and mutate

Declare

Mutate

Data-bind

Clean separation of concerns.

(MVC, yo)

Famo.us/Angular

Famo.us/
Angular

Wrong question.

Famo.us/Angular is Famo.us; it’s
just an optional design pattern. And
vanilla Famo.us and F/A are fully
compatible: you can build a single
app using both.

F/A brings some powerful features
to Famo.us (e.g. data-binding,
modularity) and solves some
problems that you’ll run into with
organizing large apps, but every
technical decision comes with trade-
offs.

So is Famo.us/Angular “better” than vanilla Famo.us?

elsagedesigns.blogspot.com

Famo.us/Angular

Pros Cons

Vanilla
Famo.us

• Doesn’t require knowledge of additional
frameworks
• Will always be on the ‘cutting edge’ of Famo.us

• Lacks structure for larger apps
• Requires imperative UI creation
• Requires mixing markup with JS
• Not easily compatible with existing
codebases

Famo.us/
Angular

• Promotes clean, scalable, maintainable
architecture
• Allows for easy visualization of your UI
(declarative, HTML!) + easier conceptualization of
Famo.us
• Allows use of Angular features like two-way data
binding, services, and routing
• Easily compatible with existing Angular apps, plus
third-party libs
• Is fully compatible with vanilla Famo.us
components/apps, so there are no dead ends

• Requires an additional dependency
• Requires AngularJS familiarity
• Can be additional overhead(
boilerplate) for simple apps
• Has some lead time before new
Famo.us features or API changes are
fully supported (separate development
effort on the library)

Famo.us/
Angular

Handy-dandy comparison chart

Famo.us/Angular

Resources

If you like Angular and you’re
interested in Famo.us (or the other
way around,) you’re going to like
F/A.

It brings the best of both worlds to
the table.

There are handy resources for
getting started, including:

famous-angular-starter: github.com/thomasstreet/famous-angular-starter
famous-angular-examples: github.com/thomasstreet/famous-angular-examples
Docs: http://famo.us/integrations/angular/docs/api/
Project Page: http://famo.us/angular

Jump right in!

Ngus (the Famo.us/Angular cow) says:
 “Ngthank you!”

